Forest Service Northeastern Forest Experiment Station General Technical Report NE-184 # Forty Years of Hydrometeorological Data from the Fernow Experimental Forest, West Virginia Mary Beth Adams James N. Kochenderfer Frederica Wood Ted R. Angradi Pamela Edwards Watershed 1 1958 Watershed 1 1993 #### **Abstract** Hydrometeorological data have been collected at the Fernow Experimental Forest in West Virginia since 1951. This publication summarizes these data, describes their collection, and provides other information that characterizes the Fernow. The value and utility of long-term data sets are discussed. #### The Authors MARY BETH ADAMS is supervisory soil scientist, JAMES N. KOCHENDERFER is research forester, FREDERICA WOOD is computer programmer, TED R. ANGRADI is research ecologist, and PAMELA EDWARDS is research hydrologist with the Northeastern Forest Experiment Station's Timber and Watershed Laboratory at Parsons, West Virginia. Manuscript received for publication 9 August 1993 Cover Photos: Watershed 1 following a commercial clearcut in 1957-58 and in 1993 after 35 years of regrowth. USDA FOREST SERVICE 5 RADNOR CORP CTR STE 200 P.O. BOX 6775 RADNOR, PA 19087-8775 March 1994 #### Introduction With heightened concern about long-term changes in the earth's atmosphere and climate has come an increased appreciation of the value of reliable long-term data. From the 1930's through the 1950's, the USDA Forest Service established a number of experimental forests around the country. Although these forests were established with a variety of objectives, those which have survived to the present are proving to be of great value because of the long data records which have accrued. The Fernow Experimental Forest in West Virginia is one such experimental forest. This publication summarizes some of the hydrometeorological data collected on the Fernow Experimental Forest during the last 40 years. This publication does not provide exhaustive analyses of these data; rather the objective is to characterize the physical and chemical environment of the Fernow Experimental Forest, and to provide readers with summaries of important data sets. More specific information and detailed analyses are provided in other publications listed in Godwin et al. (1993). #### History The Fernow Experimental Forest was established on May 28, 1934. Named in honor of Bernard E. Fernow, a well-known German-born forester who pioneered scientific forestry in the United States, it initially comprised 1,473 hectares (ha) and was expanded to 1,902 ha in 1974. The Fernow is a field laboratory for two research projects: one is concerned with the protection of water resources in central Appalachian forests; the other is studying the growth and culture of central Appalachian hardwoods. Both projects are headquartered at the Northeastern Forest Experiment Station's Timber and Watershed Laboratory at Parsons, West Virginia. Research on forest hydrology began on the Fernow in 1951 when five watersheds ranging from 15 to 39 ha were instrumented to measure precipitation and streamflow. For the first 6 years, the watersheds were calibrated to determine "natural" streamflow patterns and relationships. In 1957-58, four cutting practices ranging from commercial clearcutting to a light selection cut were initiated on four of the watersheds (Reinhart et al. 1963; Hornbeck and Reinhart 1964). Later research examined water yield, erosion, and water quality in response to other forest management practices (Patric and Reinhart 1971; Aubertin and Patric 1974; Patric and Aubertin 1977; Helvey et al. 1989; Kochenderfer et al. 1990; Edwards et al. 1991a). In addition, studies of rainfall interception, solar radiation, soil-moisture dynamics, stormflow response, and streamflow modeling have been completed (Patric and Caruso 1979; Edwards and Helvey 1985; Helvey and Patric 1987). Precipitation and streamflow have been measured almost continuously on the five original watersheds since 1951 (Table 1), and four other watersheds have since been instrumented. #### **Description of Fernow Experimental Forest** The Fernow Experimental Forest is located in the Allegheny Mountain section of the unglaciated Allegheny Plateau (latitude 39° 05' N, longitude 79° 41' W). The topography is rugged, with elevations ranging from 533 to 1,112 m, and slopes of 10 to 60 percent. Slopes of 20 to 30 percent are common. The original Fernow Experimental Forest boundaries encompassed almost the entire Elklick Run drainage, approximately 6.2 km long and as much as 3.7 km wide (Fig. 1). Figure 1.--Major streams and experimental watersheds (WS 1-7,10,13) on the Fernow Experimental Forest. Recording rain gages are indicated by a triangle and standard rain gages by a circle. Table 1.-Description and summary of treatments on Fernow watersheds | Watershed | Treatment | Treatment date | Area | Aspect | |-----------|---------------------------------------------------------------------|-----------------------------|-------|--------| | | | | ha | | | 1 | Installation | 5/51 | 30.11 | NE | | | Clearcut to 6 inches d.b.h. except culls | 5/57-6/58 | | | | | Aerial application of Dimilin | 5/86, 5/92 | | | | 2 | Installation | 5/51 | 15.50 | s | | | 17-inch diameter limit cut | 6/58-8/58 | | | | | Repeat treatment (Compartment 2A) | 7/72, 8/87 | | | | | Repeat treatment (Compartment 2B) | 7/77 | | | | | Lime application to riparian zone (3 tons/acre) | 11/90, 11/92 | | | | 3 | Installation | 5/51 | 34.27 | S | | | Intensive selection cut, including culls in trees > 5 inches d.b.h. | 10/58-2/59 | | | | | Repeat treatment | 9/63-10/63 | | | | | 0.4-acre patch cuttings (total 5.6 acres), cut to 5 inches d.b.h., | | | | | | stems sprayed with herbicide | 7/68-8/68 | | | | | Clearcut to 1 inch d.b.h., all but buffer strip | 7/69-5/70 | | | | | Clearcut buffer strip (7.4 acres), clear stream channel and | | | | | | riparian zone | 11/72 | | | | | Aerial application of ammonium sulfate 3 times/year | 1/89 to present | | | | 4 | Installation | 5/51 | 38.73 | ESE | | | Control (no treatment) | | | | | 5 | Installation | 5/51 | 36.41 | NNE | | | Extensive selection cut, | | | | | | including culls in trees > 11 inches d.b.h. | 8/58-11/58 | | | | | Repeat treatment (Compartment 5A) | 2/68-6/68, 1/78-6/78, 10/87 | | | | | Repeat treatment (Compartment 5B) | 5/83 | | | | 6 | Installation | 11/56 | 22.34 | S | | | Lower 27.5-acre clearcut | 3/64-10/64 | | | | | Maintained barren with herbicides | 5/65-10/69 | | | | | Upper 27.5-acre clearcut | 10/67-2/68 | | | | | Maintained barren with herbicides | 5/68-10/69 | | | | | Planted Norway spruce | 3/73-4/73 | | | | | Treatment of hardwood stems: aerial application of herbicide | 8/75, 9/80 | | | | 7 | Installation | 11/56 | 24.23 | E | | | Upper 30-acre clearcut | 11/63-3/64 | | | | | Maintained barren with herbicides | 5/64-10/69 | | | | | Lower 30-acre clearcut | 10/66-3/67 | | | | | Maintained barren with herbicides | 5/67-10/69 | | | | 10 | Installation | 11/84 | 15.20 | S | | | Control (no treatment) | | | | | 13 | Installation | | | | | | Control (no treatment) | 11/88 | 14.23 | NNE | The soils on the Fernow are predominantly loams and silt loams of the Calvin and Berks/Muskingam series (Typic Dystrochrepts), Belmont series (Typic Hapuludalfs), and Meckesville series (Typic Fragiudults). Soils are derived from acidic sandstones and shales of the Hampshire formation on the western half of the forest and from sandstones, shales, and limestone of the Mauch Chunk and limestone of the Greenbrier group on the eastern half of the forest. The gaged watersheds are located on shale or sandstone bedrock. Average soil depth is about 1 m (Losche and Beverage 1967). The land that became the Fernow Experimental Forest was cut heavily between 1905 and 1910, as was much of West Virginia. Most trees less than 5 cm d.b.h. and species such as sugar maple (Acer saccharum Marsh.), beech (Fagus grandifolia Ehrh.), birch (Betula lenta L.) and hickory (Carya spp.) were considered unmerchantable at the time of logging. Logs were skidded with horses and hauled to the Elk Lick Company's mills on a railroad that paralleled the main tributary of Elklick Run. When cutting began again in the early 1950's, most of the trees harvested were residual stems from the early loggings. American chestnut (Castanea dentata (Marsh.) Borkh.) was a major forest component until it was killed by the chestnut blight (Endothia parasitica) in the Timber stands on the watersheds before treatments began were 40 to 50 years old, with many scattered older residuals. Vegetation on the watersheds fit into Core's (1966) mixed hardwood forests floristic province. Common tree species on the better sites included yellow-poplar (*Liriodendron tulipifera* L.), sugar maple, black cherry (*Prunus serotina* Ehrh.), white ash (*Fraxinus americana* L.), basswood (*Tilia americana* L.), and red oak (*Quercus rubra* L.). Dominant tree species on the poorer sites included various species of oak (*Quercus* spp.), hickory (*Carya* spp.), sourwood (*Oxydendrum arboreum* (L.) DC.), and sassafras (*Sassafras albidum* (Nutt.) Nees.). Sawtimber volumes averaged 129 m<sup>3</sup> ha<sup>-1</sup> (13,000 board feet per acre) (Weitzman 1949). #### Description of Hydrometeorologic Network Since 1951, stream discharge has been measured on Watersheds 1-5 with 120° sharp-crested V-notch weirs equipped with FW-1 water level recorders (Fig. 2). After 6 years of calibration, Watershed 4 was chosen to be maintained as an untreated reference or control watershed. Most of the gaged streams are classified as second-order streams. The experimental watersheds and their treatments are described in Table 1. Currently, nine watersheds are monitored on the Fernow. An additional six gaged watersheds are located nearby on the Monongahela National Forest. However, data records from the latter watersheds are not as complete as those for the Fernow watersheds and are not discussed here. Stream-water grab samples have been collected from Watersheds 1-5 on a weekly or biweekly basis since 1960. Electrical conductivity and pH are determined for all samples. Calcium (Ca), magnesium (Mg), potassium (K), sodium (Na), sulfate (SO<sub>4</sub>), nitrate (NO<sub>3</sub>), chloride (Cl), ammonia (NH<sub>3</sub>), and alkalinity have been analyzed for most samples since March 1971. Analyses of water chemistry on weekly grab samples began on Watersheds 6 and 7 in January 1960, on Watershed 10 in December 1983, and on Watershed 13 in May 1984. The precipitation monitoring network on the Fernow consists of seven 20-cm-diameter standard rain gages and four weighing-type recording rain gages (Fig. 1), all located in the center of a forest opening large enough to provide an unobstructed zenith angle of 45° from the gage opening. Precipitation catch is measured weekly, usually on Tuesdays; strip charts on the recording rain gages are changed at that time. Total weekly precipitation collected by each standard gage is prorated into daily amounts using daily percentages from the nearest recording rain gage. Average daily watershed precipitation is computed by the Thiessen weighting method (U.S. Department of Agriculture 1962). Chemical analyses of routine grab samples and precipitation were performed at the Timber and Watershed Laboratory at Parsons; pH was determined with color indicators until 1968, and with potentiometric methods thereafter. A Leeds and Northup meter was used from 1968 to 1975, a Corning Model Figure 2.--A 120° V-notch weir equipped with a water-level recorder to measure streamflow from an experimental watershed (Watershed 5). 10 meter from 1975 to 1983, and a Fisher 815 MP meter since. Cation concentrations were determined by atomic absorption. Anion concentrations were determined by the Hach method (Hach Chemical Co. 1977) until 1981, and by ion chromatography since. Air temperature and relative humidity are monitored continuously at the Camp Hollow weather station with a hygrothermograph. Weekly maximum and minimum temperatures also are recorded with maximum/minimum thermometers. Air temperature and relative humidity have been monitored at this site since 1951. Wet-deposition collectors and bulk (wet+dry) collectors located in Camp Hollow and on Watershed 4 are part of the routine monitoring program on the Fernow. Maximum and minimum stream temperatures are recorded weekly on Watersheds 3, 4, and 10 with standard maximum/minimum thermometers placed in the streams. When flow is low so that the thermometer is exposed to the air, no measurement is recorded. Stream temperature is monitored continuously on watersheds 3 and 4 with a USGS Minimonitor (Fig. 3); see Kochenderfer and Edwards (1990) for a complete description. The Minimonitor also records in situ pH and electrical conductivity. Meteorological information has been recorded since 1958 at the Timber and Watershed Laboratory at the Nursery Bottom site (approximately 3 km north of the Fernow). Although this site is lower in elevation than much of the Fernow (506 m compared to 625 to 867 m for the experimental watersheds), the completeness and detail of the data set warrant its inclusion here. Precipitation is measured daily in a standard rain gage and continuously with a recording rain gage. Maximum and minimum air temperatures are recorded daily from thermometers, and a hygrothermograph records temperature and relative humidity continuously. Evaporation during the growing season and windspeed have been monitored since September 1964, with a standard U.S. Weather Bureau evaporation pan and 3-cup anemometer, respectively. The Nursery Bottom site is part of the National Dry Deposition Network (NDDN) and the National Atmospheric Deposition Program (NADP), providing data on air quality and precipitation chemistry. The Nursery Bottom NADP site was established in July 1978 (one of the first two sites in the United States). The NDDN site was established in January 1989. Aerochem-Metrics Model 301 wet/dry collectors collect wet and dry fallout separately (Peden 1981). Sulfur dioxide, particulate sulfate, particulate nitrate, and nitric acid are measured at the NDDN site with a 3-surface filter pack (U.S. Environmental Protection Agency 1990). Ozone is measured with a Thermo Electron Model 49 ozone analyzer (Edwards Figure 3.--Electrochemical continuous monitoring instrument (Minimonitor) and Omnidata Easy Logger data logger in a water-monitoring shelter. The trapdoor provides access to the shelter cellar where conductivity, pH, and temperature probes are located. et al. 1991b). Supporting variables measured at the NDDN site include windspeed, wind direction, temperature, relative humidity, and solar radiation. Unless otherwise indicated, data are summarized on a water-year basis. The Fernow water year begins on May 1 when the soil is fully recharged with moisture. Thus, the 1951 water year began on May 1, 1951, and ended on April 30, 1952. Data collected through the 1990 water year are included here. #### **Data Summaries** #### Precipitation Total annual precipitation is shown in Table 2. Average annual precipitation across all watersheds was 1,450 mm, with expected variability in rainfall among them. Watershed 7 received the least precipitation on average, and Watershed 1 received the most; the average difference between the precipitation reaching the two watersheds was about 80 mm. Both are east-facing slopes, so the difference does not appear to be related to aspect. <sup>&</sup>lt;sup>1</sup> The use of trade, firm, or corporation names in this paper is for the information and convenience of the reader. Such use does not constitute an official endorsement or approval by the U. S. Department of Agriculture or the Forest Service of any produce or service to the exclusion of others that may be suitable. Table 2.--Annual precipitation for Fernow watersheds, in mm | Year | WS1 | WS2 | WS3 | WS4 | WS5 | WS6 | WS7 | |-------------------|------|------|------|------|------|-----------------------------------------|------| | 1951 | 1532 | 1479 | 1490 | 1472 | 1490 | 100 m m m m m m m m m m m m m m m m m m | | | 1952 | 1295 | 1284 | 1282 | 1272 | 1282 | | | | 1953 | 1360 | 1333 | 1344 | 1353 | 1318 | | | | 1954 | 1697 | 1682 | 1688 | 1664 | 1677 | | | | 1955 | 1532 | 1497 | 1503 | 1479 | 1501 | | | | 1956 | 1782 | 1750 | 1751 | 1725 | 1732 | | | | 1957 | 1418 | 1380 | 1407 | 1384 | 1370 | 1313 | 1357 | | 1958 | 1603 | 1589 | 1583 | 1572 | 1617 | 1537 | 1550 | | 1959 | 1475 | 1466 | 1484 | 1465 | 1489 | 1412 | 1427 | | 1960 | 1578 | 1542 | 1558 | 1539 | 1530 | 1535 | 1535 | | 1961 | 1425 | 1426 | 1453 | 1459 | 1428 | 1377 | 1402 | | 1962 | 1546 | 1518 | 1531 | 1525 | 1500 | 1503 | 1516 | | 1963 | 1470 | 1467 | 1475 | 1476 | 1490 | 1407 | 1416 | | 1964 | 1395 | 1387 | 1380 | 1394 | 1423 | 1351 | 1316 | | 1965 | 1140 | 1114 | 1108 | 1096 | 1103 | 1111 | 1057 | | 1966 | 1303 | 1278 | 1280 | 1273 | 1271 | 1322 | 1231 | | 1967 | 1335 | 1303 | 1284 | 1288 | 1309 | 1258 | 1215 | | 1968 | 1344 | 1311 | 1300 | 1298 | 1300 | 1252 | 1217 | | 1969 | 1437 | 1357 | 1365 | 1383 | 1357 | 1378 | 1332 | | 1970 | 1396 | 1345 | 1344 | 1357 | 1362 | 1301 | 1281 | | 1971 | 1611 | 1539 | 1561 | 1545 | 1553 | 1519 | 1481 | | 1972 | 1675 | 1646 | 1675 | 1657 | 1689 | 1584 | 1556 | | 1973 | 1686 | 1835 | 1659 | 1642 | 1645 | 1551 | 1553 | | 1974 | 1624 | 1586 | 1641 | 1604 | 1605 | 1588 | 1551 | | 1975 | 1345 | 1304 | 1317 | 1230 | 1253 | 1259 | 1243 | | 1976 | 1284 | 1254 | 1253 | 1257 | 1265 | 1213 | 1170 | | 1977 | 1455 | 1400 | 1405 | 1385 | 1412 | 1348 | 1330 | | 1978 | 1684 | 1624 | 1637 | 1613 | 1610 | 1619 | 1625 | | 1979 | 1493 | 1462 | 1472 | 1456 | 1466 | 1434 | 1449 | | 1980 | 1438 | 1412 | 1440 | 1385 | 1396 | 1365 | 1395 | | 1981 | 1674 | 1658 | 1687 | 1630 | 1647 | 1568 | 1585 | | 1982 | 1523 | 1465 | 1578 | 1447 | 1448 | 1468 | 1517 | | 1983 | 1607 | 1569 | 1579 | 1512 | 1544 | 1528 | 1527 | | 1984 | 1554 | 1510 | 1517 | 1470 | 1518 | 1485 | 1486 | | 1985 | 1782 | 1735 | 1749 | 1757 | 1769 | 1738 | 1742 | | 1986 | 1484 | 1406 | 1403 | 1377 | 1415 | 1400 | 1387 | | 1987 | 1246 | 1205 | 1211 | 1175 | 1186 | 1178 | 1190 | | 1988 | 1513 | 1454 | 1457 | 1426 | 1455 | 1447 | 1435 | | 1989 | 1617 | 1573 | 1581 | 1567 | 1597 | 1547 | 1539 | | 1990 | 1699 | 1633 | 1635 | 1608 | 1663 | 1619 | 1583 | | Mean | 1501 | 1464 | 1476 | 1457 | 1467 | 1427 | 1418 | | Std. dev. | 150 | 148 | 154 | 148 | 154 | 142 | 152 | | Mean <sup>a</sup> | 1496 | 1457 | 1471 | 1451 | 1461 | 1427 | 1417 | | Std. dev. | 146 | 142 | 150 | 145 | 151 | 142 | 152 | <sup>&</sup>lt;sup>a</sup>Calculated using data from 1957 to 1990 only. Annual precipitation for the last 40 years for Watershed 4 is shown in Figure 4. There is no evidence of an increase or decrease in annual precipitation over the last 40 years, but the year-to-year variability is great enough that any such trend could be masked. Note the low precipitation in water years 1965 and 1987, and the high precipitation in water years 1956 and 1985. Yearly streamflow is highly correlated with yearly precipitation. Monthly precipitation for Watershed 4 for the last 40 years was distributed relatively evenly across the year and averaged 122 mm per month (Table 3). On average, spring and summer months (March through August) were those with the greatest precipitation. Data from the Nursery Bottom site show that snowfall averaged 1,370 mm per year (Fig. 5), most of which fell in January and February. Water content of the snow was not recorded, but assuming an average water Figure 4.--Annual precipitation and streamflow for Watershed 4 during water years 1951-90. Figure 5.--Annual snowfall at Nursery Bottom site for water years 1958-90. Table 3.--Monthly precipitation for Watershed 4, in mm | Water | ····· | | | | WOTOMAK ABRUSA ABRUSA | | | | | | | | *************************************** | |-----------|-------|-----|-----|-----|-----------------------|-----|-----|-----|-----|-----|-----|-----|-----------------------------------------| | year | MAY | JUN | JUL | AUG | SEP | OCT | NOV | DEC | JAN | FEB | MAR | APR | Total | | 1951 | 136 | 273 | 78 | 50 | 78 | 53 | 123 | 179 | 219 | 3 | 120 | 12 | 1472 | | 1952 | 149 | 104 | 92 | 60 | 9 | 36 | 73 | 106 | 168 | 107 | 152 | 127 | 1271 | | 1953 | 167 | 109 | 166 | 180 | 4 | 36 | 54 | 115 | 134 | 78 | 165 | 84 | 1330 | | 1954 | 90 | 90 | 158 | 272 | 59 | 275 | 68 | 140 | 94 | 146 | 185 | 85 | 1664 | | 1955 | 85 | 135 | 118 | 227 | 43 | 98 | 92 | 65 | 130 | 203 | 182 | 100 | 1479 | | 1956 | 220 | 171 | 118 | 170 | 98 | 72 | 68 | 175 | 168 | 195 | 76 | 124 | 1725 | | 1957 | 97 | 209 | 88 | 37 | 62 | 141 | 57 | 167 | 118 | 118 | 116 | 172 | 1384 | | 1958 | 138 | 171 | 296 | 215 | 76 | 42 | 92 | 47 | 155 | 90 | 115 | 136 | 1572 | | 1959 | 121 | 75 | 183 | 120 | 36 | 168 | 136 | 144 | 141 | 133 | 103 | 105 | 1465 | | 1960 | 163 | 133 | 122 | 110 | 142 | 78 | 86 | 107 | 85 | 148 | 179 | 188 | 1539 | | 1961 | 114 | 163 | 141 | 88 | 68 | 92 | 79 | 148 | 124 | 133 | 174 | 135 | 1459 | | 1962 | 107 | 166 | 101 | 54 | 124 | 142 | 136 | 142 | 74 | 114 | 271 | 92 | 1525 | | 1963 | 104 | 187 | 127 | 164 | 99 | 13 | 152 | 81 | 109 | 136 | 122 | 181 | 1476 | | 1964 | 56 | 198 | 84 | 88 | 115 | 26 | 89 | 126 | 184 | 74 | 167 | 188 | 1394 | | 1965 | 36 | 92 | 86 | 92 | 74 | 94 | 36 | 55 | 120 | 144 | 55 | 212 | 1096 | | 1966 | 80 | 58 | 125 | 80 | 154 | 71 | 94 | 91 | 43 | 115 | 247 | 114 | 1273 | | 1967 | 211 | 91 | 167 | 92 | 84 | 97 | 90 | 126 | 79 | 55 | 133 | 64 | 1288 | | 1968 | 209 | 56 | 97 | 132 | 88 | 87 | 139 | 114 | 92 | 73 | 107 | 105 | 1298 | | 1969 | 67 | 90 | 142 | 145 | 157 | 60 | 85 | 203 | 78 | 73 | 116 | 168 | 1383 | | 1970 | 60 | 112 | 188 | 120 | 110 | 56 | 86 | 206 | 147 | 122 | 110 | 40 | 1357 | | 1971 | 137 | 67 | 108 | 144 | 183 | 66 | 110 | 68 | 183 | 176 | 121 | 183 | 1545 | | 1972 | 145 | 213 | 139 | 94 | 68 | 158 | 181 | 209 | 74 | 107 | 65 | 203 | 1657 | | 1973 | 126 | 157 | 99 | 161 | 171 | 127 | 101 | 177 | 157 | 122 | 119 | 125 | 1642 | | 1974 | 174 | 210 | 94 | 140 | 117 | 55 | 97 | 146 | 145 | 115 | 161 | 152 | 1604 | | 1975 | 159 | 133 | 83 | 209 | 82 | 69 | 62 | 125 | 107 | 101 | 114 | 55 | 1300 | | 1976 | 69 | 127 | 121 | 52 | 173 | 20 | 56 | 105 | 73 | 52 | 115 | 109 | 1256 | | 1977 | 70 | 145 | 170 | 172 | 100 | 115 | 134 | 96 | 180 | 45 | 77 | 81 | 1385 | | 1978 | 137 | 156 | 246 | 114 | 47 | 61 | 86 | 208 | 226 | 138 | 77 | 118 | 1615 | | 1979 | 133 | 105 | 117 | 153 | 132 | 161 | 98 | 78 | 83 | 61 | 165 | 171 | 1457 | | 1980 | 134 | 134 | 160 | 189 | 78 | 77 | 121 | 72 | 49 | 120 | 93 | 160 | 1388 | | 1981 | 185 | 283 | 95 | 67 | 193 | 110 | 55 | 126 | 127 | 108 | 183 | 101 | 1632 | | 1982 | 128 | 201 | 113 | 158 | 133 | 75 | 116 | 100 | 66 | 59 | 126 | 175 | 1450 | | 1983 | 202 | 118 | 84 | 166 | 67 | 111 | 134 | 126 | 63 | 129 | 160 | 164 | 1523 | | 1984 | 160 | 110 | 196 | 216 | 81 | 142 | 128 | 118 | 109 | 59 | 140 | 66 | 1471 | | 1985 | 187 | 145 | 241 | 90 | 19 | 158 | 333 | 86 | 90 | 174 | 92 | 141 | 1757 | | 1986 | 93 | 155 | 188 | 110 | 90 | 91 | 184 | 88 | 108 | 62 | 52 | 155 | 1375 | | 1987 | 62 | 181 | 43 | 88 | 149 | 47 | 102 | 117 | 89 | 88 | 102 | 105 | 1173 | | 1988 | 157 | 48 | 104 | 98 | 201 | 61 | 115 | 80 | 140 | 152 | 178 | 93 | 1426 | | 1989 | 170 | 267 | 145 | 145 | 100 | 129 | 106 | 92 | 123 | 108 | 72 | 130 | 1587 | | 1990 | 209 | 115 | 180 | 105 | 115 | 113 | 52 | 195 | 129 | 89 | 167 | 138 | 1607 | | Mean | 130 | 144 | 137 | 129 | 103 | 97 | 105 | 124 | 120 | 109 | 132 | 129 | 1458 | | Std. dev. | 48 | 57 | 52 | 54 | 44 | 52 | 50 | 44 | 44 | 41 | 48 | 42 | 149 | content of 10 to 12 percent, snowfall contributed approximately 14 percent of the annual precipitation. Snow cover is intermittent throughout the winter, with snowpacks lasting only a few days to less than 2 weeks. Rain-on-snow events are common. Because the experimental watersheds are slightly higher in elevation than the Nursery-Bottom site, they receive more snow and retain snowfall longer. The 20 largest precipitation events (storms) from 1951 to 1991 are listed in Table 4. Storms are separated by 6-hour or longer periods that are free of precipitation. The single largest daily rainfall occurred on November 4, 1985, when 143 mm of rain fell due to Hurricane Juan. Hurricanes influence precipitation on the Fernow despite its inland and upland location. Most of the large storms occurred during the Table 4.—Twenty largest storm events recorded at Nursery Bottom weather station, in descending order | Rank | Amount | Duration | Date | Ту | pe | |------|--------|----------|-------------|-----------------|--------------------| | | mm | Hours | | | | | 1 | 154 | 42 | 11/2-6/85 | Hurricane Juan | Rain | | 2 | 121 | 49 | 8/15-17/75 | | Rain | | 3 | 119 | 87 | 6/20-24/72 | | Rain | | 4 | 114 | 14 | 10/15/54 | Hurricane Hazel | Rain | | 4 | 114 | 49 | 3/5-7/67 | | Rain then snow | | 6 | 97 | 49 | 12/8-10/72 | | Rain | | 7 | 93 | 67 | 9/27-30/64 | | Rain | | 8 | 92 | 42 | 5/23-24/68 | | Rain | | 8 | 92 | 25 | 6/5-6/81 | | Rain | | 10 | 91 | 33 | 10/19-22/85 | | Rain | | 11 | 90 | 53 | 5/31-6/2/74 | | Rain | | 12 | 89 | 22 | 9/13/88 | | Rain | | 12 | 89 | 16 | 7/8-9/85 | | Rain | | 14 | 88 | 88 | 3/19-22/63 | | Rain 1/2, snow 1/2 | | 15 | 86 | 19 | 9/29-30/73 | | Rain | | 16 | 84 | 63 | 9/9-11/60 | Hurricane Donna | Rain | | 16 | 84 | 68 | 4/2-7/87 | | Rain | | 18 | 83 | 38 | 7/2-4/78 | | Rain | | 18 | 83 | 26 | 2/9-10/57 | | Rain | | 20 | 81 | 58 | 10/7-9/76 | | Rain | Figure 6.--Annual precipitation for Watershed 4 and the Nursery Bottom site during water years 1951-90. Table 5.—Annual streamflow from Fernow watersheds, in mm (T indicates treatment of watershed; see Table 1 for treatment details) | Water | | | | | Watershed | | - | | | |-----------|---------------|------|------|-----|-----------|------|------|-----|----| | year | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 10 | 1: | | 1951 | ** | ** | 663 | 660 | •• | | | ** | - | | 1952 | 426 | 492 | 457 | 461 | 596 | ** | ** | | | | 1953 | 420 | 473 | 450 | 458 | 588 | | | •• | | | 1954 | 655 | 776 | 712 | 736 | 917 | | ** | | | | 1955 | 544 | 603 | 583 | 588 | 760 | ~~ | | | | | 1956 | 811 | 900 | 855 | 856 | 1056 | | | ** | | | 1957 | 539T | 555 | 541 | 526 | 662 | 424 | 652 | | | | 1958 | 801T | 788T | 711T | 724 | 933T | 579 | 860 | | | | 1959 | 638 | 685 | 593 | 590 | 766 | 471 | 706 | | | | 1960 | 699 | 734 | 690 | 660 | 832 | 538 | 843 | - | | | 1961 | 596 | 675 | 633 | 632 | 776 | 474 | 773 | *** | | | 1962 | 697 | 767 | 698 | 691 | 829 | 590 | 862 | •• | | | 1963 | 597 | 682 | 646T | 651 | 843 | 497 | 777T | | | | 1964 | 552 | 647 | 596 | 583 | 762 | 520T | 880T | | | | 1965 | 329 | 369 | 330 | 308 | 418 | 379T | 532T | | | | 1966 | 517 | 609 | 582 | 544 | 693 | 574T | 826T | | | | 1967 | 511 | 591 | 559 | 535 | 700 | 520T | 909T | | | | 1968 | 499 | 568 | 543T | 517 | 669T | 650T | 895T | | | | 1969 | 572 | 657 | 654T | 603 | 746 | 746T | 984T | •• | | | 1970 | 499 | 616 | 775T | 549 | 698 | 624 | 899 | | | | 1971 | 683T | 772 | 798 | 713 | 901 | 758 | 1044 | | | | 1972 | 776 | 934T | 912T | 849 | 1074 | 797 | 1195 | | | | 1973 | 718 | 857 | 834 | 755 | | 710T | 1077 | | | | 1974 | 742 | 884 | 851 | 776 | | 771 | 1131 | | | | 1975 | 490 | 571 | 557 | 509 | *** | 517T | 732 | | | | 1976 | 466 | 543 | 508 | 491 | | 506T | 671 | | | | 1977 | 600 | 690 | 673 | 617 | *** | 655T | 844 | *** | | | 1978 | 766 | 910 | 840 | 813 | | 865 | 1100 | ** | | | 1979 | 658 | ** | 712 | 678 | | 673 | 927 | | | | 1980 | 621 | | 633 | 617 | | 608T | 818 | | | | 1981 | 750 | | 839 | 813 | Т | 845 | 1049 | ** | | | 1982 | 648 | | 695 | 656 | | 706 | 911 | ** | | | 1983 | 693 | | 731 | 690 | | 695 | 945 | •• | | | 1984 | 674 | | 710 | 690 | | 680 | 913 | ** | | | 1985 | 950 | ** | 915 | 885 | | 886 | 1126 | 839 | | | 1986 | 5 <b>89</b> T | | 598 | 565 | ** | 554 | 782 | 572 | | | 1987 | 403 | | 435 | 415 | •• | 358 | 564 | 376 | | | 1988 | 567 | 771T | 622 | 626 | T | 512T | 821 | 610 | | | 1989 | 732 | 898 | 779T | 788 | | 691T | 995 | 725 | 98 | | 1990 | 729 | 861T | 728T | 770 | | 587 | 935 | 730 | 97 | | Mean | 619 | 696 | 666 | 640 | 772 | 614 | 882 | 642 | 98 | | Std. dev. | 128 | 144 | 133 | 128 | 151 | 132 | 155 | 147 | | (Fig. 6). An analysis of years 1982-89 revealed no statistically significant differences in rainfall between the Nursery Bottom and the Fernow.<sup>2</sup> #### Streamflow Annual streamflow for the Fernow watersheds is summarized in Table 5. Differences in average streamflow are apparent among watersheds, but these differences reflect experimental treatments as well as inherent variability. Watershed treatments and treatment effects on streamflow are described in Kochenderfer et al. (1990). The reference <sup>&</sup>lt;sup>2</sup> Gilliam, F. S.; Adams, M. B. Precipitation chemistry in the West Virginia Appalachians: temporal and spatial variation. Manuscript in preparation. watershed (Watershed 4) was used in analyses of streamflow and for other similar analyses. Because Watershed 4 has not been cut since about 1910 (except for salvage of dead American chestnut in the 1940's), it provides the best estimate of streamflow for undisturbed conditions on the Fernow. Annual streamflow on Watershed 4 averaged 640 mm, ranging from 330 mm in 1965 to 915 mm in 1985. Streamflow can be highly variable during the year but on average was greatest during late winter and early spring and least during early autumn (September-October) (Table 6). Note that there are several years with months for which no streamflow was recorded, and that there was virtually no streamflow of 7 months in 1965. Table 6.--Monthly streamflow from Watershed 4, in mm | Water | | | | | | | | | | | | | | |-----------|-----|------------|----------|-----|-----|-----|-----------|-----|-----|-----|-----|-----|-------| | year | MAY | JUN_ | JUL | AUG | SEP | OCT | NOV | DEC | JAN | FEB | MAR | APR | Total | | 1951 | 70 | 109 | 21 | 1 | 1 | 0 | 8 | 96 | 165 | 27 | 79 | 85 | 660 | | 1952 | 75 | 6 | 1 | 0 | 0 | 0 | 0 | 15 | 100 | 81 | 94 | 87 | 461 | | 1953 | 86 | 4 | 31 | 46 | 0 | 0 | 0 | 7 | 78 | 45 | 114 | 47 | 458 | | 1954 | 35 | 4 | 8 | 66 | 4 | 105 | 40 | 101 | 41 | 141 | 142 | 48 | 736 | | 1955 | 32 | 16 | 9 | 42 | 1 | 1 | 9 | 33 | 66 | 180 | 138 | 64 | 588 | | 1956 | 117 | 72 | 39 | 62 | 3 | 4 | 14 | 120 | 135 | 146 | 58 | 84 | 856 | | 1957 | 29 | 41 | 6 | 0 | 0 | 1 | 2 | 78 | 55 | 53 | 114 | 147 | 526 | | 1958 | 83 | 56 | 110 | 106 | 4 | 1 | 15 | 27 | 112 | 60 | 75 | 77 | 724 | | 1959 | 55 | 9 | 5 | 3 | 0 | 7 | 43 | 107 | 113 | 39 | 118 | 91 | 590 | | 1960 | 83 | 31 | 5 | 8 | 14 | 2 | 26 | 28 | 47 | 152 | 140 | 124 | 660 | | 1961 | 66 | 63 | 12 | 7 | 0 | 1 | 7 | 55 | 101 | 88 | 140 | 90 | 632 | | 1962 | 23 | 67 | 3 | 0 | 0 | 11 | 94 | 46 | 81 | 44 | 275 | 47 | 691 | | 1963 | 59 | 53 | 29 | 23 | 14 | 0 | 26 | 44 | 112 | 29 | 142 | 121 | 651 | | 1964 | 26 | 51 | 3 | 1 | 1 | 0 | 4 | 64 | 114 | 62 | 127 | 132 | 583 | | 1965 | 11 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 17 | 105 | 52 | 119 | 308 | | 1966 | 60 | 9 | 1 | 0 | 2 | 10 | 18 | 57 | 37 | 54 | 230 | 65 | 544 | | 1967 | 124 | 10 | 17 | 3 | 1 | 12 | 25 | 70 | 65 | 44 | 120 | 44 | 535 | | 1968 | 102 | 14 | 1 | 5 | 1 | 1 | 47 | 75 | 68 | 44 | 89 | 70 | 517 | | 1969 | 38 | 2 | 3 | 13 | 21 | 7 | 37 | 112 | 91 | 76 | 75 | 128 | 603 | | 1970 | 18 | 5 | 19 | 6 | 5 | 2 | 25 | 120 | 119 | 120 | 82 | 28 | 549 | | 1971 | 73 | 7 | 1 | 3 | 39 | 8 | 37 | 69 | 118 | 117 | 116 | 126 | 713 | | 1972 | 77 | 85 | 54 | 5 | 0 | 28 | 125 | 167 | 42 | 67 | 60 | 138 | 849 | | 1973 | 61 | 57 | 2 | 23 | 21 | 40 | 70 | 122 | 123 | 73 | 83 | 80 | 755 | | 1974 | 54 | 119 | 4 | 3 | 27 | 7 | 42 | 97 | 112 | 100 | 108 | 103 | 776 | | 1975 | 77 | <b>3</b> 5 | 6 | 40 | 3 | 2 | 14 | 49 | 91 | 90 | 66 | 36 | 509 | | 1976 | 18 | 10 | 7 | 1 | 4 | 97 | 41 | 51 | 11 | 103 | 87 | 61 | 491 | | 1977 | 32 | 8 | 27 | 46 | 5 | 41 | 63 | 91 | 84 | 14 | 151 | 56 | 617 | | 1978 | 84 | 29 | 88 | 18 | 3 | 1 | 14 | 144 | 147 | 140 | 72 | 73 | 813 | | 1979 | 64 | 11 | 9 | 29 | 29 | 93 | 58 | 53 | 40 | 58 | 121 | 114 | 678 | | 1980 | 71 | 67 | 14 | 67 | 5 | 3 | 51 | 50 | 21 | 95 | 79 | 94 | 617 | | 1981 | 99 | 140 | 10 | 3 | 41 | 25 | 33 | 83 | 98 | 96 | 120 | 66 | 813 | | 1982 | 40 | 87 | 14 | 15 | 30 | 27 | 64 | 77 | 26 | 76 | 77 | 124 | 656 | | 1983 | 111 | 20 | 4 | 3 | 2 | 7 | 65 | 89 | 29 | 101 | 129 | 130 | 690 | | 1984 | 51 | 5 | 57 | 90 | - 5 | 36 | 73 | 94 | 30 | 110 | 84 | 54 | 690 | | 1985 | 64 | 68 | 73 | 6 | 0 | 13 | 228 | 58 | 48 | 144 | 100 | 84 | 885 | | 1986 | 37 | 18 | 58 | 7 | 5 | 14 | 115 | 60 | 58 | 44 | 49 | 100 | 565 | | 1987 | 23 | 29 | 3 | 0 | 2 | 2 | 22 | 76 | 62 | 61 | 75 | 59 | 415 | | 1988 | 102 | 6 | 1 | 0 | 14 | 5 | 57 | 52 | 101 | 98 | 128 | 62 | 626 | | 1989 | 111 | 123 | 29 | 22 | 20 | 56 | 67 | 44 | 121 | 63 | 46 | 86 | 788 | | 1990 | 110 | 15 | 52 | 6 | 5 | 26 | 23 | 132 | 101 | 75 | 124 | 100 | 770 | | Mean | 64 | 39 | <u> </u> | 19 | 8 | 17 | <u>20</u> | 73 | 80 | 83 | 107 | 86 | 640 | | Std. dev. | 31 | 38 | 23 | 26 | 11 | 27 | 42 | 37 | 37 | 38 | 33 | 31 | 128 | Peak stormflows for Watershed 4 are shown in Table 7. Not surprisingly, peak flows are somewhat correlated with the largest storm events; however, during the growing season (as in the August 1975 and June 1972 storms), large storms do not always result in the greatest stormflow due to evapotranspirational demand and soil-moisture depletion. Fourteen of the 20 highest flows were recorded during the dormant season when evaporative demand is low. Annual precipitation less runoff (streamflow), expressed as PPT-RO, is shown for Watersheds 1-7 in Table 8. PPT-RO provides one means of estimating evapotranspiration and leakage. Potential evapotranspiration was estimated as 559 mm yr<sup>-1</sup> by Patric and Goswami (1968) and as 614 mm yr<sup>-1</sup> by Troendle and Phillips (1970). We can infer that there is some loss due to deep seepage or leakage around the weir cutoff walls. However, leakage has varied little over the years. Patric (1973) reported that one end of the cutoff wall on Watershed 6 is known to be seated in colluvium. The same is believed true for Watersheds 4 and 1. #### **Precipitation Chemistry** Annual and seasonal precipitation-weighted mean concentrations of Ca, Mg, K, Na, NH<sub>4</sub>, NO<sub>3</sub>, Cl, and SO<sub>4</sub> in precipitation are shown in Table 9. During 1978-91, mean annual precipitation pH ranged from 4.12 to 4.31 (Fig. 7), with a seasonal mean as low as 3.99 during the summer of 1983. These pH values were among the lowest in the United States (NADP 1991). An examination of Figure 7 reveals no apparent trends in pH of precipitation during the last 20 years, and large year-to-year variability. Summer precipitation generally was more acidic than that of other seasons. Concentrations of sulfate and nitrate also were among the highest reported for the United States (NADP Table 7.-Watershed 4 streamflow peaks, in mm | Rank | Date | Peak flow | | |------|----------|-----------|-------| | 1 | 11/4/85 | 161 | Juan | | 2 | 10/15/54 | 114 | Hazel | | 3 | 6/6/81 | 109 | * | | 4 | 2/10/57 | 98 | | | 5 | 5/24/68 | 83 | | | 6 | 3/5/63 | 74 | | | 7 | 3/6/67 | 72 | | | 8 | 12/22/70 | 70 | | | 9 | 5/28/56 | 67 | | | 10 | 8/11/84 | 63 | | | 10 | 4/30/66 | 63 | | | 12 | 1/22/59 | 61 | | | 13 | 3/21/62 | 59 | | | 14 | 3/19/63 | 58 | | | 15 | 7/9/85 | 54 | | | 15 | 1/29/70 | 54 | | | 17 | 4/28/58 | 53 | | | 18 | 11/28/85 | 51 | | | 19 | 3/5/64 | 49 | | | 19 | 8/16/75 | 49 | | 1991). Concentrations of sulfate and nitrate ions in precipitation were highest in summer and lowest in winter. #### Stream Chemistry Water Mean annual stream pH for Watershed 4 has remained relatively constant at about 6.0 (Fig. 8). The relatively large changes in pH from 1960 to 1968 probably reflect the Table 8.-Annual precipitation minus annual streamflow (PPT-RO) for Fernow watersheds, in mm | AASIBI | | | | | | | | |-----------|------|-----|-----|-----|-------|------|-------| | year | WS1 | WS2 | WS3 | WS4 | WS5 | WS6 | WS7 | | 1951 | | | 827 | 812 | | | | | 1952 | 869 | 792 | 825 | 810 | 686 | | | | 1953 | 940 | 860 | 894 | 895 | 730 | ** | | | 1954 | 1042 | 906 | 976 | 928 | 760 | | | | 1955 | 988 | 894 | 920 | 891 | 741 | | | | 1956 | 971 | 850 | 896 | 869 | 676 | | | | 1957 | 879 | 825 | 866 | 858 | 708 | 889 | 705 | | 1958 | 802 | 801 | 872 | 848 | 684 | 958 | 690 | | 1959 | 837 | 781 | 891 | 875 | 723 | 941 | 721 | | 1960 | 897 | 808 | 868 | 879 | 698 | 997 | 692 | | 1961 | 829 | 751 | 820 | 827 | 652 | 903 | 629 | | 1962 | 849 | 751 | 833 | 834 | 671 | 913 | 654 | | 1963 | 873 | 785 | 829 | 825 | 647 | 910 | 639 | | 1964 | 843 | 740 | 784 | 811 | 661 | 831 | 436 | | 1965 | 811 | 745 | 778 | 788 | 685 | 732 | 525 | | 1966 | 786 | 669 | 698 | 729 | 578 | 748 | 405 | | 1967 | 824 | 712 | 725 | 753 | 609 | 738 | 306 | | 1968 | 845 | 743 | 757 | 781 | 631 | 602 | 322 | | 1969 | 865 | 700 | 711 | 780 | 611 | 632 | 348 | | 1970 | 897 | 729 | 569 | 808 | 664 | 677 | 382 | | 1971 | 928 | 767 | 763 | 832 | 652 | 761 | 437 | | 1972 | 899 | 712 | 763 | 808 | 615 | 787 | 361 | | 1973 | 968 | 778 | 825 | 887 | | 841 | 476 | | 1974 | 882 | 702 | 790 | 828 | ** | 817 | 420 | | 1975 | 855 | 733 | 760 | 721 | 49.00 | 742 | 511 | | 1976 | 818 | 711 | 745 | 766 | | 707 | 499 | | 1977 | 855 | 710 | 732 | 768 | | 693 | 486 | | 1978 | 918 | 714 | 797 | 800 | | 754 | 525 | | 1979 | 835 | | 760 | 778 | | 761 | 522 | | 1980 | 817 | | 807 | 768 | | 757 | 577 | | 1981 | 924 | | 837 | 817 | | 723 | 536 | | 1982 | 875 | ** | 882 | 791 | | 762 | 606 | | 1983 | 914 | | 848 | 822 | | 833 | 582 | | 1984 | 880 | | 807 | 780 | | 805 | 573 | | 1985 | 832 | ** | 834 | 872 | | 852 | 616 | | 1986 | 895 | | 805 | 812 | | 846 | 605 | | 1987 | 843 | | 776 | 760 | | 820 | 626 | | 1988 | 946 | 683 | 835 | 800 | | 935 | 614 | | 1989 | 885 | 675 | 802 | 779 | | 928 | 544 | | 1990 | 970 | 772 | 907 | 838 | ** | 1032 | 648 | | Mean | 881 | 760 | 810 | 816 | 670 | 813 | 536 | | Std. dev. | 56 | 61 | 71 | 46 | 46 | 102 | 114 | | <u> </u> | | | | | ~~ | | - 117 | Table 9.--Precipitation chemistry (1978-91) for the Nursery Bottom NADP site (Precipitation-weighted means)<sup>a</sup> | Year | Ca | Mg | K | Na | NH₄ | NO <sub>3</sub> | CI | SO <sub>4</sub> | pН | Electrical conductivity | |---------------------|------|------------------------------------------------------------|-------|-------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|------------------------------------------------|------|-------------------------| | h | *** | ** an and well the ret talk at the jag as an and an an and | | mg | L-1 | enterentario e de l'alle de d'accompliant de l'alle l | and the second section and the second section section sections. | , er om en | | uS cm <sup>-1</sup> | | Annual <sup>b</sup> | | 0.000 | | 5.000 | | 4.00 | | | | | | 1978 | 0.15 | 0.020 | 0.028 | 0.205 | 0.18 | 1.32 | 0.13 | 2.99 | 4.26 | 24.8 | | 1979 | 0.23 | 0.030 | 0.041 | 0.197 | 0.24 | 1.75 | 0.13 | 3.35 | 4.26 | 29.0 | | 1980 | 0.29 | 0.032 | 0.044 | 0.150 | 0.24 | 2.04 | 0.21 | 3.56 | 4.16 | 34.3 | | 1981 | 0.29 | 0.045 | 0.039 | 0.080 | 0.28 | 1.89 | 0.16 | 3.54 | 4.18 | 35.8 | | 1982 | 0.15 | 0.024 | 0.024 | 0.048 | 0.20 | 1.30 | 0.10 | 2.64 | 4.31 | 27.1 | | 1983 | 0.16 | 0.023 | 0.029 | 0.046 | 0.20 | 1.39 | 0.11 | 2.52 | 4.29 | 26.2 | | 1984 | 0.15 | 0.026 | 0.025 | 0.051 | 0.19 | 1.37 | 0.11 | 2.46 | 4.31 | 25.6 | | 1985 | 0.18 | 0.028 | 0.031 | 0.045 | 0.23 | 1.62 | 0.12 | 3.18 | 4.19 | 33.5 | | 1986 | 0.23 | 0.031 | 0.029 | 0.063 | 0.29 | 2.06 | 0.16 | 3.96 | 4.12 | 39.5 | | 1987 | 0.17 | 0.024 | 0.023 | 0.057 | 0.28 | 1.82 | 0.14 | 3.06 | 4.22 | 31.3 | | 1988 | 0.18 | 0.022 | 0.021 | 0.051 | 0.17 | 1.61 | 0.12 | 2.95 | 4.25 | 28.6 | | 1989 | 0.12 | 0.016 | 0.019 | 0.046 | 0.25 | 1.56 | 0.12 | 2.79 | 4.23 | 29.6 | | 1990 | 0.12 | 0.017 | 0.017 | 0.046 | 0.22 | 1.42 | 0.13 | 2.49 | 4.28 | 27.2 | | 1991 | 0.15 | 0.018 | 0.023 | 0.047 | 0.20 | 1.62 | 0.13 | 2.79 | 4.24 | 29.6 | | Winter <sup>c</sup> | | | | | | | | | | | | 1979 | 0.14 | 0.014 | 0.028 | 0.144 | 0.07 | 1.06 | 1.13 | 1.89 | 4.41 | 17.7 | | 1980 | 0.41 | 0.036 | 0.050 | 0.217 | 0.11 | 2.14 | 0.26 | 2.42 | 4.43 | 22.8 | | 1981 | 0.51 | 0.036 | 0.062 | 0.066 | 0.25 | 2.16 | 0.28 | 2.88 | 4.34 | 30.5 | | 1982 | 0.34 | 0.042 | 0.049 | 0.076 | 0.19 | 1.80 | 0.17 | 2.91 | 4.32 | 27.8 | | 1983 | 0.16 | 0.024 | 0.033 | 0.062 | 0.11 | 1.39 | 0.17 | 1.20 | 4.60 | 15.2 | | 1984 | 0.14 | 0.021 | 0.022 | 0 041 | 0.09 | 1.13 | 0.12 | 1.34 | 4.58 | 15.1 | | 1985 | 0.14 | 0.027 | 0.030 | 0.074 | 0.09 | 1.31 | 0.14 | 1.61 | 4.49 | 18.5 | | 1986 | 0.55 | 0.054 | 0.065 | 0.080 | 0.28 | 2.57 | 0.21 | 3.39 | 4.22 | 33.2 | | 1987 | 0.23 | 0.025 | 0.025 | 0.053 | 0.25 | 1.94 | 0.15 | 2.00 | 4.37 | 23.3 | | 1988 | 0.13 | 0.015 | 0.016 | 0.050 | 0.08 | 1.40 | 0.11 | 1.77 | 4.42 | 19.3 | | 1989 | 0.11 | 0.013 | 0.013 | 0.056 | 0.09 | 1.29 | 0.13 | 1.81 | 4.41 | 19.5 | | 1990 | 0.13 | 0.018 | 0.018 | 0.061 | 0.17 | 1.47 | 0.15 | 1.73 | 4.39 | 20.9 | | 1991 | 0.08 | 0.010 | 0.013 | 0.040 | 0.09 | 1.08 | 0.11 | 1.59 | 4.43 | 18.9 | | Spring | | | | | | | | | | | | 1979 | 0.27 | 0.040 | 0.077 | 0.171 | 0.36 | 1.85 | 0.15 | 3.64 | 4.28 | 28.2 | | 1980 | 0.29 | 0.038 | 0.062 | 0.307 | 0.29 | 2.11 | 0.24 | 3.42 | 4.22 | 31.7 | | 1981 | 0.24 | 0.037 | 0.041 | 0.090 | 0.41 | 2.14 | 0.17 | 3.65 | 4.13 | 38.1 | | 1982 | 0.21 | 0.031 | 0.028 | 0.064 | 0.25 | 1.42 | 0.11 | 2.69 | 4.34 | 26.0 | | 1983 | 0.13 | 0.016 | 0.030 | 0.043 | 0.14 | 0.89 | 0.09 | 1.51 | 4.57 | 15.5 | | 1984 | 0.18 | 0.031 | 0.025 | 0.055 | 0.19 | 1.36 | 0.10 | 2.10 | 4.41 | 21.9 | | 1985 | 0.14 | 0.022 | 0.023 | 0.052 | 0.30 | 1.63 | 0.12 | 3.04 | 4.21 | 32.6 | | 1986 | 0.32 | 0.055 | 0.036 | 0.089 | 0.38 | 2.41 | 0.22 | 3.97 | 4.16 | 38.1 | | 1987 | 0.21 | 0.030 | 0.027 | 0.048 | 0.34 | 2.22 | 0.13 | 3.49 | 4.15 | 35.2 | | 1988 | 0.26 | 0.027 | 0.042 | 0.052 | 0.20 | 2.02 | 0.14 | 3.12 | 4.13 | 35. <u>2</u><br>31.5 | | 1989 | 0.17 | 0.021 | 0.025 | 0.048 | 0.26 | 1.89 | 0.14 | 2.95 | 4.19 | 31.4 | | 1990 | 0.15 | 0.022 | 0.028 | 0.052 | 0.27 | 1.80 | 0.14 | 2.55 | 4.13 | 27.9 | | 1991 | 0.23 | 0.027 | 0.036 | 0.067 | 0.24 | 1.68 | 0.14 | 2.33 | 4.36 | 24.5 | Table 9.--(Continued) | Year | Ca | Mg | K | Na | NH4 | NO <sub>3</sub> | CI | SO <sub>4</sub> | рН | Electrical conductivity | |--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-------|-------|-------|------|-----------------|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-------------------------| | and the consideration of the state st | | **** | | mg | L-1 | | | the last of | | uS cm <sup>-1</sup> | | Summer | | | | | | | | | | | | 1978 | 0.18 | 0.025 | 0.032 | 0.223 | 0.23 | 1.68 | 0.13 | 4.04 | 4.14 | 33.6 | | 1979 | 0.24 | 0.036 | 0.036 | 0.145 | 0.28 | 1.92 | 0.12 | 4.49 | 4.11 | 39.1 | | 1980 | 0.25 | 0.029 | 0.032 | 0.099 | 0.21 | 1.95 | 0.18 | 4.17 | 4.06 | 40.5 | | 1981 | 0.26 | 0.052 | 0.028 | 0.087 | 0.26 | 1.89 | 0.14 | 4.41 | 4.05 | 45.0 | | 1982 | 0.13 | 0.020 | 0.022 | 0.028 | 0.21 | 1.34 | 0.07 | 3.36 | 4.20 | 34.3 | | 1983 | 0.26 | 0.037 | 0.038 | 0.052 | 0.43 | 2.20 | 0.12 | 5.11 | 3.99 | 50.0 | | 1984 | 0.16 | 0.025 | 0.026 | 0.038 | 0.30 | 1.71 | 0.12 | 3.81 | 4.11 | 39.3 | | 1985 | 0.20 | 0.032 | 0.039 | 0.032 | 0.30 | 2.09 | 0.14 | 4.36 | 4.05 | 44.5 | | 1986 | 0.15 | 0.022 | 0.024 | 0.047 | 0.29 | 1.96 | 0.14 | 5.07 | 4.01 | 49.6 | | 1987 | 0.17 | 0.022 | 0.022 | 0.056 | 0.28 | 1.92 | 0.14 | 4.37 | 4.07 | 43.5 | | 1988 | 0.19 | 0.023 | 0.011 | 0.045 | 0.19 | 1.87 | 0.10 | 4.68 | 4.04 | 43.6 | | 1989 | 0.12 | 0.019 | 0.023 | 0.045 | 0.32 | 1.70 | 0.12 | 3.53 | 4.14 | 36.9 | | 1990 | 0.13 | 0.017 | 0.016 | 0.032 | 0.26 | 1.76 | 0.14 | 3.55 | 4.12 | 38.6 | | 1991 | 0.16 | 0.017 | 0.025 | 0.022 | 0.29 | 2.15 | 0.12 | 4.93 | 4.00 | 49.5 | | Fall | | | | | | | | | | | | 1978 | 0.16 | 0.023 | 0.028 | 0.139 | 0.26 | 1.68 | 0.14 | 3.41 | 4.19 | 29.7 | | 1979 | 0.24 | 0.028 | 0.023 | 0.345 | 0.23 | 1.74 | 0.12 | 2.91 | 4.37 | 24.9 | | 1980 | 0.21 | 0.022 | 0.026 | 0.035 | 0.24 | 1.66 | 0.16 | 3.00 | 4.23 | 29.5 | | 1981 | 0.19 | 0.046 | 0.028 | 0.061 | 0.20 | 1.37 | 0.08 | 2.77 | 4.34 | 26.2 | | 1982 | 0.09 | 0.016 | 0.013 | 0.049 | 0.16 | 1.03 | 0.09 | 1.81 | 4.43 | 20.7 | | 1983 | 0.11 | 0.021 | 0.023 | 0.043 | 0.12 | 1.31 | 0.11 | 2.05 | 4.34 | 23.3 | | 1984 | 0.11 | 0.023 | 0.020 | 0.060 | 0.09 | 1.02 | 0.10 | 1.55 | 4.48 | 16.8 | | 1985 | 0.07 | 0.020 | 0.010 | 0.042 | 80.0 | 0.81 | 0.08 | 2.23 | 4.33 | 24.4 | | 1986 | 0.09 | 0.013 | 0.017 | 0.054 | 0.20 | 1.49 | 0.12 | 2.70 | 4.24 | 29.2 | | 1987 | 0.15 | 0.026 | 0.023 | 0.078 | 0.28 | 1.33 | 0.17 | 2.06 | 4.44 | 20.0 | | 1988 | 0.12 | 0.017 | 0.012 | 0.050 | 0.18 | 1.13 | 0.09 | 2.38 | 4.37 | 21.8 | | 1989 | 0.07 | 0.010 | 0.010 | 0.037 | 0.25 | 1.22 | 0.10 | 2.56 | 4.28 | 26.9 | | 1990 | 0.10 | 0.015 | 0.013 | 0.049 | 0.23 | 1.15 | 0.12 | 2.29 | 4.36 | 24.0 | | 1991 | 0.09 | 0.014 | 0.015 | 0.049 | 0.19 | 1.45 | 0.12 | 2.65 | 4.22 | 29.1 | <sup>&</sup>lt;sup>a</sup>Summary data provided by National Atmospheric Deposition Program (1992). <sup>b</sup>Values represent calendar year means. <sup>c</sup>Winter = December through February; Spring = March through May; Summer = June through August; Fall = September through November. Figure 7.--Mean annual and seasonal precipitation pH (weighted by precipitation volume) for Nursery Bottom site during calendar years 1978-91. Figure 8.--pH and conductivity of streamwater from Watershed 4 during water years 1960-90. inherent variability in the colorimetric methods used rather than large changes in pH. Helvey and Kochenderfer (1991) analyzed time trends in stream pH between 1968 and 1982 but reported inconclusive results because of instrument changes in 1975 that coincided with a drop in annual pH. The authors concluded that any changes over time were small if they existed at all. By contrast, electrical conductivity increased steadily over the same period (Fig. 8, Edwards and Helvey 1991). Ca and NO<sub>3</sub> concentrations also increased (Table 10) and were primarily responsible for the increase in conductivity (Edwards and Helvey 1991). Other constituents changed randomly over time or as a result of instrument changes (e.g., NH<sub>4</sub>). There was relatively little variation in mean monthly chemistry (Table 11). #### Stream Temperature Mean monthly stream temperatures for Watershed 4 (Table 12) were highest from July through September, also the Table 10.--Annual average stream water concentrations for Watershed 4 | Water | | | | ************************************** | | the original and the second of the second of the second or | | | Electrical | |-------|--------|-------------|-----------------------------------------|----------------------------------------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------------|---------------------| | year | Ca | Mg | K | Na | NH <sub>4</sub> | NO <sub>3</sub> | рН | SO <sub>4</sub> | conductivity | | | ****** | *********** | ~ ~ ~ 4 ~ 4 ~ 4 ~ 4 ~ 4 ~ 4 ~ 4 ~ 4 ~ 4 | m | gL <sup>-3</sup> | N | | | uS cm <sup>-1</sup> | | 1969 | 1.14 | 0.490 | 0.582 | 0.562 | | 0.42 | 5.97 | 3.53 | 16.4 | | 1970 | 0.93 | 0.477 | 0.649 | 0.573 | 0.11 | 0.46 | 5.97 | 3.19 | 16.5 | | 1971 | 1.16 | 0.443 | 0.606 | 0.439 | 0.15 | 0.65 | 5.98 | 3.38 | 17.7 | | 1972 | 1.11 | 0.435 | 0.67 | 0.521 | 0.04 | 0.73 | 5.97 | 3.19 | 17.7 | | 1973 | 1.20 | 0.470 | 0.689 | 0.521 | 0.000 | 1.12 | 5.92 | 3.42 | 18.1 | | 1974 | 1.18 | 0.391 | 0.621 | 0.578 | 0.04 | 2.08 | 5.96 | 3.40 | 18.3 | | 1975 | 1.18 | 0.451 | 0.620 | 0.546 | 0.05 | 3.34 | 5.98 | 3.09 | 19.2 | | 1976 | 1.29 | 0.476 | 0.555 | 0.459 | 80.0 | 1.76 | 5.88 | 3.14 | 20.3 | | 1977 | 1.08 | 0.505 | 0.232 | 0.445 | 0.12 | 2.13 | 5.83 | 4.91 | 19.5 | | 1978 | 1.33 | 0.568 | 0.767 | 0.433 | 0.15 | 2.53 | 5.94 | 6.50 | 19.4 | | 1979 | 1.30 | 0.496 | 0.694 | 0.398 | 0.18 | 2.74 | 5.92 | 5.50 | 19.0 | | 1980 | 2.44 | 0.615 | 0.644 | 0.313 | 0.14 | 3.72 | 5.88 | 5.92 | 21.4 | | 1981 | 1.89 | 0.782 | 0.798 | 0.569 | 0.13 | 5.02 | 5.88 | 3.56 | 22.6 | | 1982 | 1.52 | 0.750 | 0.423 | 0.411 | 0.16 | 4.08 | 5.91 | 3.41 | 21.6 | | 1983 | 1.45 | 0.754 | 0.588 | 0.432 | 0.10 | 3.78 | 5.99 | 3.98 | 21.4 | | 1984 | 1.48 | 0.772 | 0.736 | 0.467 | 0.18 | 3.38 | 6.04 | 4.43 | 21.2 | | 1985 | 1.47 | 0.764 | 0.726 | 0.450 | 0.16 | 3.24 | 5.90 | 4.50 | 21.2 | | 1986 | 1.45 | 0.776 | 0.666 | 0.468 | 0.16 | 3.26 | 5.95 | 4.40 | 22.1 | | 1987 | 1.43 | 0.724 | 0.688 | 0.476 | 0.10 | 3.05 | 5.87 | 4.38 | 22.3 | | 1988 | 1.54 | 0.754 | 0.65 | 0.419 | 0.001 | 2.90 | 5.92 | 4.88 | 21.9 | | 1989 | 1.67 | 0.759 | 0.69 | 0.395 | 0.001 | 3.36 | 6.00 | 4.54 | 22.3 | | 1990 | 1.74 | 0.823 | 0.702 | 0.479 | 0.000 | 4.32 | 5.99 | 4.30 | 24.9 | Table 11.--Watershed 4 stream chemistry, monthly means for water years 1970-90 | | • | | | | | |-------|------|---------------------|-----------------|------|-------------------------| | Month | Ca | NO <sub>3</sub> | SO <sub>4</sub> | рН | Electrical conductivity | | | | mgL <sup>-1</sup> - | | | uS cm <sup>-3</sup> | | May | 1.38 | 2.52 | 4.07 | 5.96 | 19.7 | | June | 1.50 | 2.74 | 3.95 | 5.93 | 20.3 | | July | 1.40 | 2.70 | 4.13 | 5.95 | 19.9 | | Aug. | 1.43 | 2.21 | 3.93 | 5.95 | 20.5 | | Sept. | 1.47 | 2.74 | 4.22 | 5.96 | 20.9 | | Oct. | 1.43 | 2.52 | 4.40 | 5.96 | 20.8 | | Nov. | 1.42 | 2.61 | 4.30 | 5.94 | 20.6 | | Dec. | 1.34 | 2.66 | 4.52 | 5.88 | 20.4 | | Jan. | 1.36 | 3.23 | 4.06 | 5.85 | 20.2 | | Feb. | 1.36 | 3.36 | 3.93 | 5.81 | 20.5 | | March | 1.39 | 3.54 | 3.96 | 5.83 | 20.1 | | April | 1.58 | 3.10 | 3.85 | 5.92 | 20.4 | months of lowest flow. Stream temperatures were lowest in January and February. Mean annual temperature varied only by several degrees from year to year. Stream temperatures also have been recorded on Watershed 10 (another untreated control catchment) since 1984. A comparison of stream temperatures for the two control watersheds during 1984-90 reveals few differences (Fig. 9). Fluctuations in stream temperature followed fluctuations in air temperature, suggesting that ground-water input is constant or relatively small. #### Air Temperature Mean monthly air temperatures ranged from -1° to 5°C in January to 25°C in July for both the Camp Hollow (Fig. 10) and Nursery Bottom sites (not shown). The record low temperature of -29.4°C was recorded on January 16, 1982, at Camp Hollow. The record high temperature of 37.2°C was recorded on July 16, 1988, also at Camp Hollow. Daily variation is greater in winter than in summer. #### Solar Radiation Solar radiation was measured for 12 years (1965-77) at the Nursery Bottom with a Kipp-Zonen pyranometer (Patric and Caruso 1979). Mean daily radiation peaked in June (Fig. 11) when the range of measured daily radiation also was greatest. Daily radiation values were lowest and least variable during December. On clear days (those with less than one hour of cloudiness after the usual morning fog), daily inputs of solar energy approached the upper limits expected at the site during solstice and equinox months. The authors concluded that: 1) 700 or more langleys (29.33 MJ m<sup>-2</sup>) are probable for only 1 day in both May and June; 2) at Table 12.--Mean monthly stream temperatures for Watershed 4, in °C | Water | 24424 | | ** ** | 44.0 | | | | | | | | | | |-----------|-------|-----|-------|------|-----|-----|----------|-----|-----|-----|-------------|-----|------| | year | MAY | JUN | JUL | AUG | SEP | OCT | NOV | DEC | JAN | FEB | MAR | APR | Mean | | 1959 | 12 | 13 | 17 | 17 | 16 | 10 | 9 | 7 | 6 | 5 | 4 | 10 | 11 | | 1960 | 11 | 13 | 14 | 16 | 15 | 11 | 8 | 5 | 4 | 3 | 7 | 7 | 10 | | 1961 | 10 | 12 | 13 | 15 | 17 | 12 | 8 | 5 | 4 | 4 | 4 | 7 | 9 | | 1962 | 12 | 13 | 12 | 15 | | 12 | 8 | 7 | 4 | 3 | 6 | 10 | 9 | | 1963 | 11 | 12 | 14 | 15 | 13 | 11 | 8 | 7 | 3 | 3 | 6 | 7 | 9 | | 1964 | 11 | 13 | 14 | | | | •• | 7 | 6 | 4 | 4 | 8 | 8 | | 1965 | 13 | 14 | 16 | 15 | | | | 4 | 3 | 3 | 5 | 7 | 9 | | 1966 | 10 | 13 | 17 | 17 | 13 | 10 | 7 | 6 | 5 | 5 | 6 | 8 | 10 | | 1967 | 9 | 13 | 14 | 15 | 12 | 11 | 6 | 5 | 3 | 4 | 5 | 8 | 9 | | 1968 | 8 | 11 | 15 | 16 | 13 | 11 | 7 | 4 | 3 | 3 | 2 | 7 | 8 | | 1969 | 10 | 13 | 16 | 15 | 13 | 12 | 7 | 4 | 2 | 3 | 3 | 7 | 9 | | 1970 | 10 | 13 | 14 | 15 | 14 | 11 | 7 | 6 | 3 | 3 | 5 | 7 | 9 | | 1971 | 9 | 12 | 16 | 15 | 15 | 13 | 9 | 7 | 6 | 3 | 6 | 8 | 10 | | 1972 | 11 | 13 | 14 | 16 | 15 | 11 | 9 | 7 | 4 | 4 | 7 | 9 | 10 | | 1973 | 10 | 13 | 16 | 16 | 16 | 13 | 9 | 8 | 7 | 6 | 7 | 8 | 11 | | 1974 | 12 | 12 | 14 | 16 | 15 | 9 | 10 | 6 | 6 | 6 | 6 | 7 | 10 | | 1975 | 11 | 13 | 16 | 17 | 14 | 12 | 10 | 7 | 4 | 5 | 7 | 8 | 10 | | 1976 | 11 | 13 | 16 | 16 | 14 | 11 | 7 | 5 | 2 | 4 | 7 | 9 | 10 | | 1977 | 11 | 13 | 16 | 16 | 16 | 11 | 9 | 7 | 3 | 2 | 4 | 8 | 10 | | 1978 | 9 | 12 | 14 | 16 | 16 | 10 | 8 | 6 | 6 | 3 | 5 | 8 | 9 | | 1979 | 11 | 12 | 14 | 15 | 13 | 11 | 8 | 6 | 4 | 2 | 5 | 8 | 9 | | 1980 | 10 | 12 | 16 | 16 | 16 | 11 | 7 | 6 | 2 | 3 | 5 | 8 | 9 | | 1981 | 10 | 13 | 16 | 16 | 14 | 9 | 7 | 4 | 3 | 4 | 5 | 7 | 9 | | 1982 | 12 | 12 | 15 | 16 | 13 | 11 | 9 | 6 | 4 | 4 | 5 | 7 | 10 | | 1983 | 9 | 12 | 16 | 17 | 19 | 12 | 9 | 7 | 4 | 4 | 6 | 8 | 10 | | 1984 | 11 | 14 | 15 | 15 | 14 | 12 | 9 | 8 | 4 | 4 | 6 | 9 | 10 | | 1985 | 12 | 13 | 14 | 17 | 17 | 13 | 12 | 4 | 3 | 6 | 4 | 9 | 10 | | 1986 | 12 | 14 | 15 | 17 | 13 | 12 | 10 | 7 | 4 | 3 | 5 | 8 | 10 | | 1987 | 11 | 14 | 17 | 18 | 15 | 9 | 8 | 7 | 4 | 4 | 5 | 9 | 10 | | 1988 | 11 | 13 | 16 | | 14 | 9 | 8 | 4 | 6 | 6 | 8 | 8 | 9 | | 1989 | 11 | 14 | 17 | 17 | 16 | 12 | 10 | 8 | 5 | 7 | 7 | 9 | 11 | | 1990 | 12 | 13 | 16 | 17 | 16 | 11 | <u>:</u> | 8 | 6 | 6 | <del></del> | 9 | 11 | | Mean | 11 | 13 | 15 | 16 | 15 | 11 | 8 | 6 | 4 | 4 | 5 | 8 | | | Std. dev. | 1.1 | 0.7 | 1.2 | 0.9 | 1.6 | 1.1 | 1.2 | 1.3 | 1.3 | 1.3 | 1.3 | 2.3 | | least 100 langleys (41.90 MJ m<sup>-2</sup>) are probable for every day in July and August; 3) radiation in excess of 300 langleys (12.57 MJ m<sup>-2</sup>) is unlikely from November through January; and 4) 500 or more langleys (20.95 MJ m<sup>-2</sup>) are likely for half of the days in June. Mature forests of the Fernow absorb 86 percent of the solar radiation during leafless, snowfree conditions, 80 percent during full-leaf conditions, and 68 percent when there is snow cover (Hornbeck 1970). #### Windspeed/Direction Windspeed and direction have been recorded at the NDDN site on the Nursery Bottom since 1988. (Windspeed has been recorded only since 1964 at the Nursery Bottom weather station; those data are not summarized here because the NDDN data provide greater information despite the shorter period of record.) Average wind strength for the 4 years of record was calculated as wind direction X speed X time, and expressed in km day<sup>-1</sup>. Figures 12-13 display wind occurrences by octant for the growing and dormant seasons. During the growing season, the wind most often was from the WNW or the ESE. During the dormant season, it most often was from the WNW. Wind strength generally was greater during the dormant season (Fig. 13), particularly for winds from the WNW. #### **Evaporation** Evaporation data are summarized by month and water year in Table 13. As expected, evaporation was greatest during the summer months of June and July. Almost no measurements were collected in water year 1986, following a flood in November 1985 that destroyed the weather station. Evaporation, as measured by the Nursery Bottom evaporation pan, is approximately 45 percent of precipitation. Figure 9.--Mean monthly stream temperature for Watersheds 4 and 10. Solid line is mean monthly air temperature averaged over water years 1984-90. Figure 10.--Mean monthly, maximum, minimum, and record maximum and minimum air temperature at the Camp Hollow weather station during water years 1951-90. #### Ozone/Air Quality Edwards et al. (1991b) characterized concentrations of atmospheric ozone during consecutive drought and wet years (1988 and 1989, respectively) for the Nursery Bottom site. Overall, the frequency of high concentrations was greater during 1988. Diurnal ozone patterns are typical of low-elevation sites for this part of the United States, with peaks in afternoon and depressions at night (Fig. 14). Growing-season concentrations generally are greater than during the dormant season. Ozone levels are high in this region and can exceed the National Ambient Air Quality standard of 120 ppb (hourly). Four years of ozone data are shown in Figure 15. Note that water year 1991, which also was a drought year, had high concentrations of ozone during the summer, corroborating the conclusions of Edwards et al. (1991b). Maximum hourly ozone concentrations recorded for 1988, 1989, 1990, and 1991 were 156, 107, 102, and 99 ppb, respectively. #### Data Availability The Fernow Experimental Forest data in this report can be obtained from the USDA Forest Service, Timber and Watershed Laboratory, Parsons, WV 26287, Attn: Watershed Project Data Manager. Streamflow data are available as Figure 11.--Mean daily radiation at Nursery Bottom site, 1965-77. Adapted from Patric and Caruso (1979). Figure 12.--Wind roses showing percent of occurrences for each of 16 quadrats during growing season (May-October), and dormant season (November through April). 0.6 mm = 1 percent. Numbers within circles indicate percent calm winds (<5 mph) rounded to nearest 5 percent. Figure 13.--Wind roses showing wind strength (km day $^{-1}$ ) for each of 16 quadrats during growing season (May through October) and dormant season (November through April). 0.6 mm $\approx$ 1 km day $^{-1}$ . Table 13.—Mean daily evaporation (growing season, by month) and total evaporation from Nursery Bottom evaporation pan | Water | | | | | | | | |-----------|------|------|------|------|------|------|-------| | year | MAY | JUN | JUL | AUG | SEP | OCT | Total | | 1965 | 4.77 | 5.09 | 5.12 | 4.40 | 3.75 | 2.64 | 790 | | 1966 | 5.15 | 4.81 | 5.38 | 4.06 | 2.96 | 2.30 | 757 | | 1967 | 3.17 | 5.21 | 3.78 | 3.31 | 2.86 | | 553 | | 1968 | 3.10 | 4.26 | 4.84 | 3.95 | 2.95 | 1.75 | 631 | | 1969 | 4.25 | 4.28 | 4.54 | 4.04 | 3.31 | 2.32 | 678 | | 1970 | 4.77 | 4.82 | 4.35 | 4.63 | 3.51 | 2.01 | 734 | | 1971 | 3.63 | 4.40 | 4.62 | 4.29 | 2.90 | 1.86 | 665 | | 1972 | 3.95 | 4.26 | 4.12 | 3.82 | 2.93 | 2.25 | 643 | | 1973 | 3.16 | 5.00 | 4.68 | 3.64 | 3.76 | 2.48 | 692 | | 1974 | 4.16 | 5.15 | 4.79 | 4.33 | 3.27 | 2.09 | 711 | | 1975 | 4.07 | 4.90 | 4.56 | 4.45 | 3.14 | 2.20 | 694 | | 1976 | 3.81 | 4.79 | 4.79 | 4.56 | 3.53 | 2.50 | 710 | | 1977 | 4.61 | 4.09 | 4.76 | 4.01 | 2.75 | 1.96 | 660 | | 1978 | 3.47 | 4.50 | 4.77 | 4.53 | 3.46 | 2.17 | 695 | | 1979 | 4.04 | 4.58 | 3.88 | 3.56 | 2.86 | 1.84 | 626 | | 1980 | 3.58 | 4.44 | 4.42 | 4.09 | 3.19 | 2.00 | 650 | | 1981 | 3.33 | 4.11 | 4.23 | 3.88 | 2.56 | 1.95 | 574 | | 1982 | 4.45 | 3.89 | 4.24 | 3.90 | 2.46 | 1.90 | 596 | | 1983 | 3.52 | 4.13 | 4.60 | 4.28 | 2.84 | 1.82 | 648 | | 1984 | 3.18 | 4.67 | 3.95 | 3.29 | 3.04 | 1.66 | 602 | | 1985 | 4.05 | 4.00 | 4.88 | 3.04 | 3.29 | 2.03 | 647 | | 1986 | | ** | | | •• | •• | *** | | 1987 | 4.96 | 5.05 | 5.60 | 5.42 | 2.79 | 2.39 | 793 | | 1988 | 4.03 | 5.77 | 5.80 | 5.05 | 2.95 | 1.91 | 730 | | 1989 | 3.00 | 3.89 | 4.29 | 3.41 | 2.72 | 1.90 | 588 | | 1990 | 3.44 | 4.52 | 4.71 | 4.02 | 2.84 | 1.83 | 641 | | Mean | 3.91 | 4.58 | 4.63 | 4.08 | 3.06 | 2.07 | 668 | | Std. Dev. | 0.61 | 0.46 | 0.48 | 0.54 | 0.34 | 0.26 | 62 | Figure 14.--Typical diurnal pattern of hourly ozone concentrations for growing season and dormant season. Adapted from Edwards et al. (1991). Figure 15.--Mean monthly 7-hour (0900-1559) ozone concentrations at the Nursery Bottom site for water years 1988-91. mean daily csm, precipitation data as total daily watershed-weighted precipitation, and air-temperature data as daily maximum and minimum temperature in degrees Fahrenheit. Data on stream water and precipitation chemistry are available by collection date in the units discussed previously. All data are stored in ASCII-format flat files. Air quality and meteorological data from the National Dry Deposition Network can be requested from the U.S. Environmental Protection Agency, Atmospheric Research and Exposure Assessment Laboratory, Research Triangle Park, NC 17711, Attn: NDDN Project Officer. #### Conclusion Long-term hydrometeorological monitoring requires a concerted effort and careful attention to detail by scientific and support staff, along with unwavering administrative support. Long-term data bases are necessary to reliably detect and quantify subtle environmental changes. Data collected by scientists on and near the Fernow Experimental Forest comprise probably the longest and most complete hydrometeorological record for the central Appalachians. As such, the Fernow represents a unique, irreplaceable resource that is increasing in value with time. In addition to hydrometeorological data, there are extensive data on stand and tree growth, as well as data that describe many other ecosystem parameters. Knowledge gleaned from such data has helped natural resource managers better manage forest ecosystems. The Northeastern Forest Experiment Station's support for long-term ecosystem research assures that the compilation of existing and new data sets will continue. Thus, the Fernow Experimental Forest is poised for use in long-term ecosystem studies and development of effective forest management strategies. #### Acknowledgments The collection, analysis, and quality of the data presented here are due largely to the dedicated efforts of many persons. Burley (Bud) Fridley and John Campbell (pictured below) were responsible for much of the day-to-day data collection for the watershed project during the last 40 years. Their diligence, attention to detail, and concern about the final product were outstanding. We also recognize the contributions of other current and past members of the field crew: Melvin Owens, Clifford Phillips, Douglas Owens, Frank Long, Cloyd Reinhart, Allen Hopkins, and James Phillips. Emmett Fox, John Pearce, and James Phillips performed chemical analyses on water samples, assisted by Jean Cassidy, Joan Mullenax, and Buck Grey. Data entry and analyses were performed by Anne Dennison, Linda Loughry, Layne Godwin, and Frederica Wood. The early vision and hard work of Sidney Weitzman, Arthur Eschner, Dick Trimble, and Ken Reinhart provided a sound basis for all of the succeeding years' work. ## Literature Cited - Aubertin, G. M.; Patric, J. H. 1974. Water quality after clearcutting a small watershed in West Virginia. Journal of Environmental Quality. 3: 243-249. - Core, E. L. 1966. **Vegetation of West Virginia.** Parsons, WV: McClain Printing Company. 217 p. - Edwards, P. J.; Helvey, J. D. 1985. Variability of rainfall chemistry within a 40-ha field in north central West Virginia. In: Hutchinson, B. A.; Hicks, B. B., eds. The forest-atmosphere interaction. Dordrecht, Netherlands: D. Reidel Publishing Company: 309-318. - Edwards, P. J.; Helvey, H. D. 1991. Long-term ionic increases from a central Appalachian forested watershed. Journal of Environmental Quality. 20: 250-255. - Edwards, P. J.; Kochenderfer, J. N.; Seegrist, D. W. 1991a. Effects of forest fertilization on stream water chemistry in the Appalachians. Water Resources Bulletin. 27(2): 265-274. - Edwards, P. J.; Wood, F.; Kochenderfer, J. N. 1991b. Characterization of ozone during consecutive drought and wet years at a rural West Virginia site. Journal of Air and Waste Management Association. 41: 1450-1453. - Godwin, M. L.; Wood, F.; Adams, M. B.; Eye, M. C. 1993. Annotated bibliography of research related to the Fernow Experimental Forest. Gen. Tech. Rep. NE-174. Radnor, PA: U.S. Department of Agriculture, Forest Service, Northeastern Forest Experiment Station. 131 p. - Hach Chemical Company. 1977. **Drinking water analysis** handbook. Ames, IA: Hach Chemical Company. 219 p. - Helvey, J. D.; Kochenderfer, J. N. 1991. Time trends in selected chemical characteristics of streamflow from an undisturbed watershed in West Virginia. In: Rennie, P. J., Robitaille, G., eds. Effects of acid rain on eastern forests: proceeding of the conference; 1983 June 14-17; Sainte-Foy, PQ. Sainte-Foy, PQ: Forestry Canada: 429-437. - Helvey, J. D.; Patric, J. H. 1987. Research on interception losses and soil moisture relationships. In: Swank, W. T.; Drossley, D. A., Jr., eds. Forest hydrology and ecology at Coweeta. New York: Springer-Verlag, 66: 129-137. - Helvey, J. D.; Kochenderfer, J. N.; Edwards, P. J. 1989. Effects of forest fertilization on selected ion concentrations in central Appalachian streams. In: Proceedings, 7th central hardwood conference; 1989 March 5-8; Carbondale, IL. Gen. Tech. Rep. NC-132. St. Paul, MN: U.S. Department of Agriculture, Forest Service, North Central Forest Experiment Station: 278-282. - Hornbeck, J. W. 1970. The radiant energy budget of clearcut and forested sites in West Virginia. Forest Science. 16: 139-145. - Hornbeck, J.; Reinhart, K. G. 1964. Water quality and soil erosion as affected by logging in steep terrain. Journal of Soil & Water Conservation. 19(1): 23-27. - Kochenderfer, J. N.; Edwards, P. J. 1990. Design and construction of a low-cost stream-monitoring shelter. Gen. Tech. Rep. NE-135. Broomall, PA: U.S. Department of Agriculture, Forest Service, Northeastern Forest Experiment Station. 10 p. - Kochenderfer, J. N.; Edwards, P. J.; Helvey, J. D. 1990. Land management and water yield in the Appalachians. In: Proceedings, IR conference, watershed management/IR DIV / ASCE, watershed planning and analysis in action symposium; 1990, July 9-11; Durango, CO. New York: American Society of Civil Engineers: 523-532. - Losche, C. K.; Beverage, W. W. 1967. Soil survey of Tucker County and part of northern Randolph County, West Virginia. Washington, DC: U.S. Department of Agriculture, Forest Service, Northeastern Forest Experiment Station. 78 p. - National Atmospheric Deposition Program. 1991. NADP / NTN annual data summary: precipitation chemistry in the United States. 1990. Fort Collins, CO: Colorado State University, Natural Resource Ecology Laboratory. 475 p. - National Atmospheric Deposition Program. 1992. NADP / NTN annual data summary: precipitation chemistry in the United States. 1991. Fort Collins, CO: Colorado State University, Natural Resource Ecology Laboratory. 475 p. - Patric, J. H. 1973. **Deforestation effects on soil moisture, streamflow and water balance in the central Appalachians.** Res. Pap. NE-259. Upper Darby, PA: U.S. Department of Agriculture, Forest Service, Northeastern Forest Experiment Station. 12 p. - Patric, J. H.; Reinhart, K. G. 1971. Hydrologic effects of deforesting two mountain watersheds in West Virginia. Water Resources Research. 7: 1182-1188. - Patric, J. H.; Caruso, S. 1979. **Solar radiation at Parsons, West Virginia.** Res. Note NE-272. Broomall, PA: U.S. Department of Agriculture, Forest Service, Northeastern Forest Experiment Station. 6 p. - Patric, J. H.; Goswami, N. 1968. Evaporation pan studies-forest research at Parsons. West Virginia Agriculture and Forestry. 1(4): 6-10. - Peden, M. E. 1981. Sampling, analytical and quality assurance protocols for the National Atmospheric Deposition Program. Symposium and workshop on - sampling and analysis of rain. ASTMD-22. Philadelphia, PA: American Society of Testing Materials. - Reinhart, K. G.; Eschner, A.; Trimble, G. R., Jr. 1963. Effect on streamflow of four forest practices in the mountains of West Virginia. Res. Pap. NE-1. Upper Darby, PA: U.S. Department of Agriculture, Forest Service, Northeastern Forest Experiment Station. 79 p. - Troendle, C. A.; Phillips, J. D. 1970. **Evaporation-rain falling up.** West Virginia Agriculture and Forestry. 3(2): 5.11. - U.S. Department of Agriculture. 1962. Field manual for research in agricultural hydrology. Agric. Handb. 224. Washington, DC; U.S. Department of Agriculture. 215 p. - U.S. Environmental Protection Agency. 1990. National Dry Deposition Network: second annual progress report (1988). EPA-600/3-90/020. Washington, DC: U.S. Environmental Protection Agency, Office of Research and Development. 88 p. - Weitzman, S. 1949. The Fernow Experimental Forest, Parsons, West Virginia. Upper Darby, PA: U.S. Department of Agriculture, Forest Service, Northeastern Forest Experiment Station. 16 p. ### Appendix Dates of Equipment Use | Instrument | Date | | | | | |----------------------------------------------|-----------------------|--|--|--|--| | рН | | | | | | | Hellige | Before 3/11/68 | | | | | | Leeds and Northrup | 7/7/65 to 10/6/75 | | | | | | Corning 10 | 10/6/75 to 9/27/83 | | | | | | Beckman Altex | 9/27/82 to present | | | | | | Fisher 815/915 | 9/27/83 to present | | | | | | Conductivity | | | | | | | Industrial Instruments Solu-Bridge | Before 1978 | | | | | | Beckman Solu-Bridge | 1978 to 10/18/82 | | | | | | Markson Digital | April 1981 to 3/22/88 | | | | | | Radiometer CDM83 | 3/22/88 to present | | | | | | Turbidity | | | | | | | JTU Candle Turbidimeter | Before 1969 | | | | | | Hach 1860 Turbidimeter | 1969 to 1971 | | | | | | H & F Turbidimeter | 1971 to 7/14/80 | | | | | | Hach ration Turbidimeter | 7/14/80 to present | | | | | | Alkalinity | | | | | | | Methyl Orange | Before 4/23/75 | | | | | | Buret Titration | 4/23/75 to Nov. 1980 | | | | | | Fisher Automatic Titration | Nov. 1980 to 9/7/87 | | | | | | Radiometer Titralab | 9/8/87 to present | | | | | | Ammonia | | | | | | | Hach NH3-N Method Using B & L Spectronic 100 | 3/10/81 to 4/5/88 | | | | | | Wescan Ammonia Analyzer | 4/5/88 to present | | | | | | Cations (except NH3-N) | | | | | | | Perkin Elmer 390B AA | Before 10/10/80 | | | | | | Perkin Elmer 503 AA | 10/10/80 to 9/1/92 | | | | | | ARL Spectraspan V DCP | 9/1/92 to present | | | | | | Anions | | | | | | | Hach Ion Methods Using B & L Spectronic 20 | Before 3/10/81 | | | | | | Dionex Model 10 IC | 3/12/81 to 11/2/87 | | | | | | Dionex 4000i HPLC | 11/2/87 to present | | | | | Adams, Mary Beth; Kochenderfer, James N.; Wood, Frederica; Angradi, Ted R.; Edwards, Pamela. 1994. Forty years of hydrometeorological data from the Fernow Experimental Forest, West Virginia. Gen. Tech. Rep. NE-184. Radnor, PA: U.S. Department of Agriculture, Forest Service, Northeastern Forest Experiment Station. 24 p. Hydrometeorological data have been collected on the Fernow Experimental Forest in West Virginia since 1951. This publication summarizes these data, describes their collection, and provides other information that characterizes the Fernow. The value and utility of long-term data sets are discussed. **Keywords:** hydrology, climate, watershed research, Fernow Experimental Forest, hydrometeorology